Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ukr Biochem J ; 87(3): 37-46, 2015.
Artigo em Russo | MEDLINE | ID: mdl-26502698

RESUMO

The enzymes involved in thiamine triphosphate (ThTP) metabolism in birds are not characterized so far. The aim of the present work was to study some properties of ThTPase in chicken liver. In liver homogenate, ThTPase activity has been found to display a bell-like pH-profile with a maximum of 5.5-6.0. Low activity was observed without divalent metal ions, while the addition of Mg2+ or Ca2+, each at 5 mM concentration, enhanced the rate of ThTP hydrolysis by a factor of 17-20. In the presence of 5 mM Mg2+ an apparent K(m) of the enzyme for ThTP was estimated by the method of non-linear regression as well as from the Hanes plot to be 1.7-2.2 mM. Monovalent anions such as I-, SCN-, NO3-, Br-, Cl- (at 150 mM concentration) showed inhibitory effect decreasing the rate of ThTPase reaction by 20-60%. After the homogenate was centrifuged, more than 85% of ThTPase activity was revealed in the fraction of insoluble particles indicating a membrane localization of the enzyme. The precipitate treatment with 1% sodium deoxycholate caused about 53% solubilization of the activity. During Toyopeal HW-55 chromatography, ThTPase activity was eluted simultaneously with ATPase and ITPase peaks in the void volume of the column. Thus, a non-specific high molecular mass protein complex seems to be involved in ThTP hydrolysis in the chicken liver. The chicken liver phosphatase is clearly distinguishable from all membrane-bound ThTPases reported previously.


Assuntos
Membrana Celular/enzimologia , Fígado/enzimologia , Tiamina Trifosfatase/metabolismo , Animais , Ânions/química , Cátions Bivalentes/química , Galinhas , Concentração de Íons de Hidrogênio , Hidrólise , Fígado/citologia , Solubilidade , Especificidade por Substrato , Tiamina Trifosfatase/química , Tiamina Trifosfato/química
2.
Metab Brain Dis ; 29(4): 1069-82, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24590690

RESUMO

Thiamine triphosphate (ThTP) was discovered over 60 years ago and it was long thought to be a specifically neuroactive compound. Its presence in most cell types, from bacteria to mammals, would suggest a more general role but this remains undefined. In contrast to thiamine diphosphate (ThDP), ThTP is not a coenzyme. In E. coli cells, ThTP is transiently produced in response to amino acid starvation, while in mammalian cells, it is constitutively produced at a low rate. Though it was long thought that ThTP was synthesized by a ThDP:ATP phosphotransferase, more recent studies indicate that it can be synthesized by two different enzymes: (1) adenylate kinase 1 in the cytosol and (2) FoF1-ATP synthase in brain mitochondria. Both mechanisms are conserved from bacteria to mammals. Thus ThTP synthesis does not seem to require a specific enzyme. In contrast, its hydrolysis is catalyzed, at least in mammalian tissues, by a very specific cytosolic thiamine triphosphatase (ThTPase), controlling the steady-state cellular concentration of ThTP. In some tissues where adenylate kinase activity is high and ThTPase is absent, ThTP accumulates, reaching ≥ 70% of total thiamine, with no obvious physiological consequences. In some animal tissues, ThTP was able to phosphorylate proteins, and activate a high-conductance anion channel in vitro. These observations raise the possibility that ThTP is part of a still uncharacterized cellular signaling pathway. On the other hand, its synthesis by a chemiosmotic mechanism in mitochondria and respiring bacteria might suggest a role in cellular energetics.


Assuntos
Tiamina Trifosfato/fisiologia , Trifosfato de Adenosina/metabolismo , Adenilato Quinase/metabolismo , Aminoácidos/metabolismo , Animais , Encéfalo/metabolismo , Citosol/metabolismo , Previsões , Humanos , Doença de Leigh/metabolismo , Mitocôndrias/metabolismo , Modelos Biológicos , Modelos Neurológicos , Especificidade de Órgãos , Fosforilação , Processamento de Proteína Pós-Traducional , ATPases Translocadoras de Prótons/metabolismo , Transdução de Sinais , Especificidade da Espécie , Tiamina Trifosfatase/metabolismo , Tiamina Trifosfato/biossíntese
3.
FEBS J ; 280(24): 6443-55, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24021036

RESUMO

The CYTH superfamily of proteins was named after its two founding members, the CyaB adenylyl cyclase from Aeromonas hydrophila, and the human 25-kDa thiamine triphosphatase (ThTPase). Members of this superfamily of proteins exist in all organisms, including bacteria, archaeons, fungi, plants, and animals (except birds), and can be traced back to the last universal common ancestor. Their sequences include several charged residues involved in divalent cation and triphosphate binding. Indeed, all members of the CYTH superfamily that have been characterized act on triphosphorylated substrates and require at least one divalent metal cation for catalysis. In most cases, the enzyme-substrate complex adopts a tunnel-like (ß-barrel) conformation. The Nitrosomonas europaea, Escherichia coli and Arabidopsis thaliana CYTH proteins are specific inorganic tripolyphosphatases. We propose that inorganic tripolyphosphate, the simplest triphosphate compound, is the primitive substrate of CYTH proteins, other enzyme activities, such as adenylate cyclase (in A. hydrophila and Yersinia pestis), mRNA triphosphatase (in fungi and protozoans), and ThTPase (in metazoans), being secondary acquisitions. ThTPase activity is not limited to mammals, as sea anemone and zebrafish CYTH proteins are specific ThTPases. The acquisition of this enzyme activity is linked to the presence of a tryptophan involved in the binding of the thiazolium heterocycle of the thiamine molecule. Furthermore, we propose a conserved catalytic mechanism between a bacterial inorganic tripolyphosphatase and metazoan ThTPases, based on a catalytic dyad comprising a lysine and a tyrosine, explaining the alkaline pH optimum of these enzymes.


Assuntos
Hidrolases/metabolismo , Polifosfatos/metabolismo , Tiamina Trifosfatase/metabolismo , Sequência de Aminoácidos , Animais , Humanos , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos
4.
Biochim Biophys Acta ; 1830(10): 4513-23, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23707715

RESUMO

BACKGROUND: Thiamine triphosphate (ThTP) is present in most organisms and might be involved in intracellular signaling. In mammalian cells, the cytosolic ThTP level is controlled by a specific thiamine triphosphatase (ThTPase), belonging to the CYTH superfamily of proteins. CYTH proteins are present in all superkingdoms of life and act on various triphosphorylated substrates. METHODS: Using crystallography, mass spectrometry and mutational analysis, we identified the key structural determinants of the high specificity and catalytic efficiency of mammalian ThTPase. RESULTS: Triphosphate binding requires three conserved arginines while the catalytic mechanism relies on an unusual lysine-tyrosine dyad. By docking of the ThTP molecule in the active site, we found that Trp-53 should interact with the thiazole part of the substrate molecule, thus playing a key role in substrate recognition and specificity. Sea anemone and zebrafish CYTH proteins, which retain the corresponding Trp residue, are also specific ThTPases. Surprisingly, the whole chromosome region containing the ThTPase gene is lost in birds. CONCLUSIONS: The specificity for ThTP is linked to a stacking interaction between the thiazole heterocycle of thiamine and a tryptophan residue. The latter likely plays a key role in the secondary acquisition of ThTPase activity in early metazoan CYTH enzymes, in the lineage leading from cnidarians to mammals. GENERAL SIGNIFICANCE: We show that ThTPase activity is not restricted to mammals as previously thought but is an acquisition of early metazoans. This, and the identification of critically important residues, allows us to draw an evolutionary perspective of the CYTH family of proteins.


Assuntos
Tiamina Trifosfatase/metabolismo , Sequência de Aminoácidos , Animais , Biocatálise , Dicroísmo Circular , Cristalografia por Raios X , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Conformação Proteica , Homologia de Sequência de Aminoácidos , Espectrometria de Massas por Ionização por Electrospray , Especificidade por Substrato , Tiamina Trifosfatase/química
5.
Ukr Biokhim Zh (1999) ; 82(1): 34-41, 2010.
Artigo em Russo | MEDLINE | ID: mdl-20684226

RESUMO

The current work is aimed at understanding the structure and functionality of thiamine binding protein (TBP) in neural cells plasma membranes. The influence of thiamine triphosphate on thiamine binding by TBP in synaptic plasma membranes (SPM) isolated from the rat brain was investigated. It was shown that thiamine triphosphate inhibits thiamine binding activity of SPM in concurrent manner (K(i) = 1.0 +/- 0.3 microM). At the same time thiamine had no effect on thiamine triphosphatase (ThTPase) activity at the concentration range 0.5-20 microM. Otherwise, ThTPase activation with the maximum at the concentration about 2.5 microM was observed. Further, the influence of classic thiamine antagonists (amprolium, oxythiamine and pyrithiamine) on both biological activities of TBP in SPM was studied. The IC50 value for inhibition of thiamine binding on SPM by amprolium comprised 50 +/- 4.0 microM. Still, this antagonist had no effect on ThTPase activity. For the oxythiamine inhibition of both TBP activities was detected. The values of IC50 were 125 +/- 28 and 1000 +/- 95 microM for thiamine binding and ThTPase activity, respectively. The values of IC50 for thiamine binding and ThTPase activity inhibition differed by more than one order of magnitude and comprised 2.2 +/- 0.2 and 43 +/- 9 microM, respectively. The obtained data indicate that the active sites on SPM responsible for thiamine binding and ThTPase activity have different sensitivity to thiamine antagonists. Our results allow us to suppose that different active protein sites are responsible for the specific binding and for thiamine phosphates hydrolysis by TBP of synaptic membranes.


Assuntos
Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Sinaptossomos/metabolismo , Tiamina/metabolismo , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Domínio Catalítico , Concentração Inibidora 50 , Ligantes , Masculino , Ligação Proteica , Ensaio Radioligante , Ratos , Tiamina Trifosfatase/metabolismo , Tiamina/antagonistas & inibidores , Tiamina Pirofosfato/metabolismo , Tiamina Trifosfato/metabolismo
6.
Ukr Biokhim Zh (1999) ; 81(3): 57-65, 2009.
Artigo em Russo | MEDLINE | ID: mdl-19877430

RESUMO

The kinetic parameters of the ThTP hydrolysis by synaptic plasma membranes isolated from rat brain were investigated. It was shown that the ThTPase reaction pH optimum was 7.4, the apparent K(m) was 52 microM and the apparent affinity constant for Mg2+ was 1.9 mM. The comparative analysis of the indicated parameters was done for the ThTPase activity of membrane bound (the data of present work and literature data) and cytosolic (literature data) proteins. The analysis allows us to suppose that thiamine-binding protein described earlier is the single ThTPase activity carrier in neural cells plasma membranes. It was shown that the active site of the enzyme that catalyzes the ThTP hydrolysis in neural cells plasma membranes is associated with the inside membrane surface.


Assuntos
Encéfalo/enzimologia , Membrana Celular/enzimologia , Sinaptossomos/enzimologia , Tiamina Trifosfatase/metabolismo , Animais , Encéfalo/citologia , Células Cultivadas , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Cloreto de Magnésio/metabolismo , Ratos , Tiamina Trifosfatase/isolamento & purificação , Tiamina Trifosfato/metabolismo
7.
Ukr Biokhim Zh (1999) ; 81(6): 26-42, 2009.
Artigo em Russo | MEDLINE | ID: mdl-20387656

RESUMO

Thiamine triphosphate (ThTP) exists in various living cells--from bacteria to mammals. ThTP concentration in mammals is regulated by a specific soluble ThTPase, which has not been revealed experimentally, however, in other organisms. In NCBI and Ensembl databases we have found information about full-size or partial amino acid sequences of the enzyme from 38 mammal species. An average rate of amino acid substitutions (k(aa)) in ThTPase molecule was estimated from the data available to be 1.41 x 10(-9) per site per year. This corresponds to unit evolutionary period of about 4.4 million years. The evolutionary rate varies for different portions of the enzyme, C-terminal fragment being the most variable (k(aa) = 3.76 x 10(-9); calculated only for 230 aa species + elephant). An average replacement rate of 1.95 x 10(-9) per amino acid site per year was calculated for the central portion of the enzyme (residues 69-141), while N-terminal sequence (residues 1-68) and 142-210 fragment evolved with k(aa) of 1.03 x 10(-9) and 0.81 x 10(-9), respectively.


Assuntos
Evolução Molecular , Tiamina Trifosfatase/química , Sequência de Aminoácidos , Animais , Humanos , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Solubilidade , Tiamina Trifosfatase/genética , Tiamina Trifosfatase/metabolismo
8.
J Biomol NMR ; 41(4): 221-39, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18668206

RESUMO

We report substantial improvements to the previously introduced automated NOE assignment and structure determination protocol known as PASD (Kuszewski et al. (2004) J Am Chem Soc 26:6258-6273). The improved protocol includes extensive analysis of input spectral data to create a low-resolution contact map of residues expected to be close in space. This map is used to obtain reasonable initial guesses of NOE assignment likelihoods which are refined during subsequent structure calculations. Information in the contact map about which residues are predicted to not be close in space is applied via conservative repulsive distance restraints which are used in early phases of the structure calculations. In comparison with the previous protocol, the new protocol requires significantly less computation time. We show results of running the new PASD protocol on six proteins and demonstrate that useful assignment and structural information is extracted on proteins of more than 220 residues. We show that useful assignment information can be obtained even in the case in which a unique structure cannot be determined.


Assuntos
Algoritmos , Conformação Proteica , Processamento de Sinais Assistido por Computador , Animais , Proteínas de Bactérias/química , Proteínas de Transporte/química , Proteínas de Ligação a DNA/química , Eficiência , Proteínas de Escherichia coli/química , Humanos , Interleucina-4/química , Funções Verossimilhança , Methanobacterium/química , Camundongos , Modelos Químicos , Modelos Moleculares , Nitrito Redutases/química , Ressonância Magnética Nuclear Biomolecular/métodos , Reconhecimento Automatizado de Padrão/métodos , Projetos de Pesquisa , Tiamina Trifosfatase/química
9.
J Biol Chem ; 283(16): 10939-48, 2008 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-18276586

RESUMO

Mammalian soluble thiamine triphosphatase (ThTPase) is a 25-kDa cytosolic enzyme that specifically catalyzes the conversion of thiamine triphosphate (ThTP) to thiamine diphosphate and has an absolute requirement for divalent cations. We have investigated the kinetic properties of recombinant mouse thiamine triphosphatase (mThTPase) and determined its solution structure by NMR spectroscopy. Residues responsible for binding Mg(2+) and ThTP were determined from NMR titration experiments. The binding of Mg(2+) induced only a minor local conformational change, whereas ThTP binding was found to cause a more global conformational change. We derived a structural model for the mThTPase.ThTP.Mg(2+) ternary complex and concluded from this that whereas free mThTPase has an open cleft fold, the enzyme in the ternary complex adopts a tunnel fold. Our results provide a functional rationale for a number of conserved residues and suggest an essential role for Mg(2+) in catalysis. We propose a mechanism underlying the high substrate specificity of mThTPase and discuss the possible role of water molecules in enzymatic catalysis.


Assuntos
Tiamina Trifosfatase/fisiologia , Sequência de Aminoácidos , Animais , Catálise , Citosol/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Espectroscopia de Ressonância Magnética , Camundongos , Modelos Biológicos , Conformação Molecular , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Homologia de Sequência de Aminoácidos , Tiamina Trifosfatase/química
10.
Biochim Biophys Acta ; 1725(1): 93-102, 2005 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-16000236

RESUMO

Thiamine triphosphate (ThTP) is found in most organisms and may be an intracellular signal molecule produced in response to stress. We have recently cloned the cDNA coding for a highly specific mammalian 25-kDa thiamine triphosphatase. The enzyme was active in all mammalian species studied except pig, although the corresponding mRNA was present. In order to determine whether the very low ThTPase activity in pig tissues is due to the absence of the protein or to a lack of catalytic efficiency, we expressed human and pig ThTPase in E. coli as GST fusion proteins. The purified recombinant pig GST-ThTPase was found to be 2-3 orders of magnitude less active than human GST-ThTPase. Using site-directed mutagenesis, we show that, in particular, the change of Glu85 to lysine is responsible for decreased solubility and catalytic activity of the pig enzyme. Immunohistochemical studies revealed a distribution of the protein in pig brain very similar to the one reported in rodent brain. Thus, our results suggest that a 25-kDa protein homologous to hThTPase but practically devoid of enzyme activity is expressed in pig tissues. This raises the possibility that this protein may play a physiological role other than ThTP hydrolysis.


Assuntos
Suínos , Tiamina Trifosfatase/química , Tiamina Trifosfatase/metabolismo , Sequência de Aminoácidos , Animais , Encéfalo/enzimologia , Catálise , Clonagem Molecular , Escherichia coli/genética , Humanos , Imuno-Histoquímica , Cinética , Dados de Sequência Molecular , Peso Molecular , Mutagênese Sítio-Dirigida , Homologia de Sequência de Aminoácidos , Tiamina Trifosfatase/genética
11.
Int J Biochem Cell Biol ; 36(10): 2032-41, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15203116

RESUMO

Thiamine triphosphate (ThTP) is found in most organisms, but its biological role remains unclear. In mammalian tissues, cellular ThTP concentrations remain low, probably because of hydrolysis by a specific 25 kDa thiamine triphosphatase (ThTPase). The aim of the present study was to use quantitative PCR, for comparing the 25 kDa ThTPase mRNA expression in various mouse tissues with its enzyme activities. ThTPase mRNA was expressed at only a few copies per cell. The highest amount of mRNA was found in testis, followed by lung and muscle, while the highest enzyme activities were found in liver and kidney. The poor correlation between mRNA levels and enzyme activities might result either from tissue-specific post-transcriptional regulation of mRNA processing and/or translation or from the regulation of enzyme activities by post-translational mechanisms. Purified recombinant human ThTPase was phosphorylated by casein kinase II, but this phosphorylation did not modify the enzyme activity. However, the characterization of the 3'-untranslated mRNA region revealed a unique, highly conserved, 200-nucleotide sequence that might be involved in translational control. In situ hybridization studies in testis suggest a predominant localization of ThTPase mRNA in poorly differentiated spermatogenic cells. This is the first study demonstrating a cell-specific 25 kDa ThTPase mRNA expression, suggesting that this enzyme might be related to the degree of differentiation or the metabolic state of the cell.


Assuntos
Perfilação da Expressão Gênica , RNA Mensageiro/metabolismo , Tiamina Trifosfatase/genética , Tiamina Trifosfatase/metabolismo , Regiões 3' não Traduzidas/genética , Animais , Sequência de Bases , Caseína Quinase II/metabolismo , Bovinos , Sequência Conservada/genética , Humanos , Macaca/genética , Masculino , Camundongos , Dados de Sequência Molecular , Fosforilação , Reação em Cadeia da Polimerase , RNA Mensageiro/genética , Ratos , Alinhamento de Sequência , Suínos/genética , Testículo/metabolismo , Tiamina Trifosfatase/biossíntese
12.
Neuroscience ; 125(4): 833-40, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15120844

RESUMO

Thiamine triphosphate (ThTP) is found in small amounts in most organisms from bacteria to mammals, but little is known about its physiological role. In vertebrate tissues, ThTP may act as a phosphate donor for the phosphorylation of certain proteins; this may be part of a new signal transduction pathway. We have recently characterized a highly specific 25-kDa thiamine triphosphatase (ThTPase) that is expressed in most mammalian tissues. The role of this enzyme may be the control of intracellular concentrations of ThTP. As the latter has been considered to be a neuroactive form of thiamine, we have studied the distribution of ThTPase mRNA and protein in rodent brain using in situ hybridization and immunohistochemistry. With both methods, we found the strongest staining in hippocampal pyramidal neurons, as well as cerebellar granule cells and Purkinje cells. Some interneurons were also labeled and many ThTPase mRNA-positive and immunoreactive cells were distributed throughout cerebral cortical gray matter and the thalamus. White matter was not significantly labeled. ThTPase immunoreactivity seems to be located mainly in the cytoplasm of neuronal perikarya. Immunocytochemical data using dissociated cultured cells from hippocampal and cerebellum showed that the staining was more intense in neurons than in astrocytes. The protein was rather uniformly located in the perikarya and dendrites, suggesting that ThTP and ThTPase may play a general role in neuronal metabolism rather than a specific role in excitability. There was no apparent correlation between ThTPase expression and selective vulnerability of certain brain regions to thiamine deficiency.


Assuntos
Encéfalo/enzimologia , Neurônios/enzimologia , Tiamina Trifosfatase/metabolismo , Animais , Humanos , Imuno-Histoquímica , Hibridização In Situ , Masculino , Camundongos , RNA Mensageiro/análise , Ratos , Ratos Wistar , Proteínas Recombinantes/metabolismo
13.
Int J Biochem Cell Biol ; 36(7): 1348-64, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15109578

RESUMO

Thiamine triphosphate (ThTP) is found in most living organisms and it may act as a phosphate donor for protein phosphorylation. We have recently cloned the cDNA coding for a highly specific mammalian 25 kDa thiamine triphosphatase (ThTPase; EC 3.6.1.28). As the enzyme has a high catalytic efficiency and no sequence homology with known phosphohydrolases, it was worth investigating its structure and catalytic properties. For this purpose, we expressed the untagged recombinant human ThTPase (hThTPase) in E. coli, produced the protein on a large scale and purified it to homogeneity. Its kinetic properties were similar to those of the genuine human enzyme, indicating that the recombinant hThTPase is completely functional. Mg2+ ions were required for activity and Ca2+ inhibited the enzyme by competition with Mg2+. With ATP as substrate, the catalytic efficiency was 10(-4)-fold lower than with ThTP, confirming the nearly absolute specificity of the 25 kDa ThTPase for ThTP. The activity was maximum at pH 8.5 and very low at pH 6.0. Zn2+ ions were inhibitory at micromolar concentrations at pH 8.0 but activated at pH 6.0. Kinetic analysis suggests an activator site for Mg2+ and a separate regulatory site for Zn2+. The effects of group-specific reagents such as Woodward's reagent K and diethylpyrocarbonate suggest that at least one carboxyl group in the active site is essential for catalysis, while a positively charged amino group may be involved in substrate binding. The secondary structure of the enzyme, as determined by Fourier-transform infrared spectroscopy, was predominantly beta-sheet and alpha-helix.


Assuntos
Tiamina Trifosfatase/genética , Tiamina Trifosfatase/metabolismo , Trifosfato de Adenosina/química , Sítios de Ligação , Catálise , Cátions Bivalentes/química , Cerebelo/enzimologia , Clonagem Molecular , DNA Complementar/genética , Dietil Pirocarbonato/química , Ativação Enzimática , Estabilidade Enzimática , Escherichia coli/enzimologia , Escherichia coli/genética , Humanos , Estrutura Molecular , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Especificidade por Substrato , Tiamina Trifosfatase/química , Tiamina Trifosfato/análogos & derivados
14.
Ukr Biokhim Zh (1999) ; 75(5): 63-8, 2003.
Artigo em Russo | MEDLINE | ID: mdl-14681994

RESUMO

Mitochondrial preparations isolated from bovine kidney and brain as well as the liver and the brain of rat show thiamine triphosphatase (ThTPase) activity. The activity was determined from the particles by freezing-thawing suggesting that a soluble enzyme is involved. The liberation patterns of ThTPase and marker enzyme activities from mitochondria under osmotic shock or treatment with increasing Triton X-100 concentrations indicate the presence of ThTPase both in the matrix and intermembrane space. It was found, basing on gel filtration behavior, that the mitochondrial ThTPase has the same molecular mass as specific cytosolic ThTPase (EC 3.6.1.28). The enzymes, however, were clearly distinguishable in Km values, the mitochondrial one showing a higher apparent affinity for substrate. These results imply the existence of ThTPase multiple forms in mammalian cells.


Assuntos
Mitocôndrias/enzimologia , Tiamina Trifosfatase/metabolismo , Animais , Encéfalo/enzimologia , Encéfalo/metabolismo , Bovinos , Citosol/enzimologia , Matriz Extracelular/enzimologia , Concentração de Íons de Hidrogênio , Técnicas In Vitro , Rim/enzimologia , Rim/metabolismo , Fígado/enzimologia , Fígado/metabolismo , Ratos
15.
Cell Mol Life Sci ; 60(7): 1477-88, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12943234

RESUMO

In most organisms, the main form of thiamine is the coenzyme thiamine diphosphate. Thiamine triphosphate (ThTP) is also found in low amounts in most vertebrate tissues and can phosphorylate certain proteins. Here we show that ThTP exists not only in vertebrates but is present in bacteria, fungi, plants and invertebrates. Unexpectedly, we found that in Escherichia coli as well as in Arabidopsis thaliana, ThTP was synthesized only under particular circumstances such as hypoxia (E. coli) or withering (A. thaliana). In mammalian tissues, ThTP concentrations are regulated by a specific thiamine triphosphatase that we have recently characterized. This enzyme was found only in mammals. In other organisms, ThTP can be hydrolyzed by unspecific phosphohydrolases. The occurrence of ThTP from prokaryotes to mammals suggests that it may have a basic role in cell metabolism or cell signaling. A decreased content may contribute to the symptoms observed during thiamine deficiency.


Assuntos
Bactérias/metabolismo , Tiamina Trifosfatase/metabolismo , Tiamina Trifosfato/metabolismo , Sequência de Aminoácidos , Animais , Bactérias/enzimologia , Encéfalo/enzimologia , Bovinos , Fungos/enzimologia , Fungos/metabolismo , Humanos , Invertebrados , Masculino , Mamíferos , Dados de Sequência Molecular , Plantas/enzimologia , Plantas/metabolismo , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Suínos , Tiamina Trifosfatase/química
16.
Ukr Biokhim Zh (1999) ; 75(6): 111-4, 2003.
Artigo em Russo | MEDLINE | ID: mdl-15143527

RESUMO

The distribution of thiamine-binding and thiamine triphosphatase activity typical of thiamine-binding proteins was studied in intracellular structures of rats liver and kidneys. It was found that the fraction of microsomes has the highest rate of specific thiamine-binding activity amide fractions of subcellular structures that was isolated using differential centrifugation in the both organs. Hydrolysis of thiamine triphosphate (pH 7.4) was also extremely active in these structures. The results of our research allow to make a conclusion that subcellular structures precipitated as fraction of microsomes (endoplasmic reticulum and vesicled parts of plasma membranes) are the sites of the most probable localisation of thiamine-binding proteins of liver and kidneys.


Assuntos
Proteínas de Transporte/metabolismo , Espaço Intracelular/metabolismo , Rim/metabolismo , Fígado/metabolismo , Animais , Membrana Celular/enzimologia , Membrana Celular/metabolismo , Retículo Endoplasmático/enzimologia , Retículo Endoplasmático/metabolismo , Espaço Intracelular/enzimologia , Rim/citologia , Rim/enzimologia , Fígado/citologia , Fígado/enzimologia , Masculino , Ratos , Ratos Wistar , Tiamina Trifosfatase/metabolismo
17.
J Biol Chem ; 277(16): 13771-7, 2002 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-11827967

RESUMO

Thiamine triphosphate (ThTP) is found at low concentrations in most animal tissues, and recent data suggest that it may act as a phosphate donor for the phosphorylation of some proteins. In the mammalian brain, ThTP synthesis is rapid, but its steady-state concentration remains low, presumably because of rapid hydrolysis. In this report we purified a soluble thiamine triphosphatase (ThTPase; EC ) from calf brain. The bovine ThTPase is a 24-kDa monomer, hydrolyzing ThTP with virtually absolute specificity. Partial sequence data obtained from the purified bovine enzyme by tandem mass spectrometry were used to search the GenBank data base. A significant identity was found with only one human sequence, the hypothetical 230-amino acid protein MGC2652. The coding regions from human and bovine brain mRNA were amplified by reverse transcription-PCR, cloned in Escherichia coli, and sequenced. The human open reading frame was expressed in E. coli as a GST fusion protein. Transformed bacteria had a high isopropyl-beta-d-thiogalactopyranoside-inducible ThTPase activity. The recombinant ThTPase had properties similar to those of human brain ThTPase, and it was specific for ThTP. The mRNA was expressed in most human tissues but at relatively low levels. This is the first report of a molecular characterization of a specific ThTPase.


Assuntos
Encéfalo/enzimologia , Tiamina Trifosfatase/biossíntese , Tiamina Trifosfatase/química , Sequência de Aminoácidos , Animais , Bovinos , Clonagem Molecular , DNA Complementar/metabolismo , Bases de Dados como Assunto , Eletroforese em Gel de Poliacrilamida , Escherichia coli/metabolismo , Glutationa Transferase/metabolismo , Humanos , Isopropiltiogalactosídeo/farmacologia , Cinética , Espectrometria de Massas , Dados de Sequência Molecular , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Fatores de Tempo , Distribuição Tecidual , Transfecção
18.
Ukr Biokhim Zh (1978) ; 70(1): 22-30, 1998.
Artigo em Russo | MEDLINE | ID: mdl-9848135

RESUMO

The analysis of the steady-state kinetics of the thiamine triphosphate ester hydrolysis reaction catalyzed by homogeneous thiamine triphosphatase (EC 3.6.1.28; thiamine triphosphate phosphohydrolase) from bovine brain enables us to suggest, that the ThTP binding to the catalytic site of the ThTPase active centre takes place by the phosphate radical. The correct orientation of the substrate molecule occurs by means of the contact of the thiamine component. The crucial role in this process belong to the amino group of the pyrimidine ring and hydrophobic forces. The quaternary nitrogen of thiazole is important for the hydrolytic splitting of the substrate. The hydrolysis of thiamine triphosphate ester occurs through the formation of the ternary enzyme-substrate complex, with the Mg2+ and Mg.ThTP adding being random.


Assuntos
Encéfalo/enzimologia , Citosol/enzimologia , Ésteres/metabolismo , Tiamina Trifosfatase/metabolismo , Animais , Encéfalo/ultraestrutura , Bovinos , Hidrólise , Solubilidade , Água/química
19.
Biochem Mol Biol Int ; 46(1): 115-23, 1998 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-9784846

RESUMO

Properties of soluble thiamine triphosphatase (ThTPase), adenosine triphosphatase, nucleoside triphosphatase and alkaline phosphatase activities in bovine kidney were compared. ThTPase and the other phosphatases differed clearly in their pH-dependences, K(m) and molecular masses. Apparent K(m) and pH optimum for ThTPase were determined to be 45.5 microM and 8.9, respectively. Molecular mass of the enzyme was 29.1 kDa as estimated by Sephadex G-100 gel filtration. The results obtained show bovine kidney to contain a specific soluble ThTPase, this enzyme being the only one hydrolyzing low concentrations of ThTP.


Assuntos
Rim/enzimologia , Tiamina Trifosfatase/metabolismo , Hidrolases Anidrido Ácido/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Fosfatase Alcalina/metabolismo , Animais , Bovinos , Cromatografia em Gel , Concentração de Íons de Hidrogênio , Inosina Trifosfato/metabolismo , Cinética , Peso Molecular , Nucleosídeo-Trifosfatase , Tiamina Trifosfatase/química , Tiamina Trifosfato/metabolismo
20.
Ukr Biokhim Zh (1978) ; 69(5-6): 41-50, 1997.
Artigo em Russo | MEDLINE | ID: mdl-9606824

RESUMO

The steady-state kinetics of the ThTP hydrolysis by thiamine triphosphatase (EC 3.6.1.28) from bovine brain testified to the presence of two kinetically significant conformational states of the protein, their equilibrium being determined by the substrate concentration. The ThTPase isomeric forms had different activities, affinities for ThTP and activation energies. The form with high affinity for the substrate was characterized by the Km and Vmax values of 43 microM and 9.9 mumol.s-1.mg-1 whereas for the form with lower affinity these values were equal to 298 microM and 19.3 mumol.s-1.mg-1, respectively. The activation energies of the ThTP hydrolysis reactions were 85.3 and 47.1 kJ.mol-1. Several mechanisms of the enzyme activity regulation in the cell are suggested. One of the mechanisms is related to the allosteric ThTP effect inducing reversible transition of the protein to a more active conformational state, while the others include the inhibition activity by ATP and the activation of ThTP-ase by Mg2+ free ions.


Assuntos
Encéfalo/enzimologia , Citosol/enzimologia , Tiamina Trifosfatase/metabolismo , Animais , Bovinos , Hidrólise , Cinética , Magnésio/farmacologia , Conformação Proteica , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...